Submodular Maximization through the Lens of Linear Programming

نویسندگان

  • Simon Bruggmann
  • Rico Zenklusen
چکیده

The simplex algorithm for linear programming is based on the fact that any local optimum with respect to the polyhedral neighborhood is also a global optimum. We show that a similar result carries over to submodular maximization. In particular, every local optimum of a constrained monotone submodular maximization problem yields a 1/2-approximation, and we also present an appropriate extension to the nonmonotone setting. However, reaching a local optimum quickly is a non-trivial task. Moreover, we describe a fast and very general local search procedure that applies to a wide range of constraint families, and unifies as well as extends previous methods. In our framework, we match known approximation guarantees while disentangling and simplifying previous approaches. Moreover, despite its generality, we are able to show that our local search procedure is slightly faster than previous specialized methods. Furthermore, we resolve an open question on the relation between linear optimization and submodular maximization; namely, whether a linear optimization oracle may be enough to obtain strong approximation algorithms for submodular maximization. We show that this is not the case by providing an example of a constraint family on a ground set of size n for which, if only given a linear optimization oracle, any algorithm for submodular maximization with a polynomial number of calls to the linear optimization oracle will have an approximation ratio of only O( 1 √ n · logn log logn ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forthcoming in Mathematical Programming MAXIMIZING A CLASS OF SUBMODULAR UTILITY FUNCTIONS

Given a finite ground set N and a value vector a ∈ R , we consider optimization problems involving maximization of a submodular set utility function of the form h(S) = f (∑ i∈S ai ) , S ⊆ N , where f is a strictly concave, increasing, differentiable function. This function appears frequently in combinatorial optimization problems when modeling risk aversion and decreasing marginal preferences, ...

متن کامل

Guarantees for Greedy Maximization of Non-submodular Functions with Applications

We investigate the performance of the GREEDY algorithm for cardinality constrained maximization of non-submodular nondecreasing set functions. While there are strong theoretical guarantees on the performance of GREEDY for maximizing submodular functions, there are few guarantees for non-submodular ones. However, GREEDY enjoys strong empirical performance for many important non-submodular functi...

متن کامل

Greedy Maximization of Submodular Functions

Traditional optimization techniques often rely upon functions that are convex or at least locally convex. Such diverse methods as gradient descent, loopy belief propagation, and linear programming all rely upon convex functions. However, many natural functions are not convex, yet optimizing over them is both possible and necessary. The class of submodular functions is particularly well-behaved ...

متن کامل

Deterministic Algorithms for Submodular Maximization Problems

Randomization is a fundamental tool used in many theoretical and practical areas of computer science. We study here the role of randomization in the area of submodular function maximization. In this area most algorithms are randomized, and in almost all cases the approximation ratios obtained by current randomized algorithms are superior to the best results obtained by known deterministic algor...

متن کامل

Adapting Kernel Representations Online Using Submodular Maximization

Kernel representations provide a nonlinear representation, through similarities to prototypes, but require only simple linear learning algorithms given those prototypes. In a continual learning setting, with a constant stream of observations, it is critical to have an efficient mechanism for sub-selecting prototypes amongst observations. In this work, we develop an approximately submodular crit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.11316  شماره 

صفحات  -

تاریخ انتشار 2017